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Abstract 

A method is proposed for the solution of the phase 
problem at very low resolution for macromolecules. It 
generates randomly a very large number of models, 
each consisting of a few (two to ten) pseudo-atoms. 
The corresponding amplitudes are used for selecting 
a subset of 'best' models by choosing those with the 
highest correlation with experimental values. The phases 
calculated from these 'best' models are analysed by 
a clusterization procedure leading to a few possible 
solutions, from which the correct one can be recognized 
by simple additional criteria. This method has been 
successfully applied to the neutron diffraction data of 
the AspRS-tRNA A~p complex at 50 A, resolution and to 
data calculated from a model ribosome crystal at 60/~ 
resolution. 

1. Introduction 

The phase problem arises from the experimental diffi- 
culty of measuring phases in a diffraction experiment 
from molecular crystals. If no data other than the diffrac- 
tion amplitudes from the native crystal are to be fitted, 
the phase problem is not solvable, since any set of phases 
will provide a density distribution. Therefore, additional 
information is necessary, which for the general case can 
be of two forms. 

(1) Amplitudes from other crystals, related to the 
native amplitudes through a phase-dependent function; 
this is the case for the isomorphous-replacement method, 
anomalous scattering, multiwavelength anomalous scat- 
tering, solvent contrast and related methods where the 
phase is measured indirectly through the amplitudes. 

(2) Information about the nature of the electron- 
density distribution, which limits the set of possible 
phases; for example, the strong constraint of atomicity 
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has led to algorithms capable of providing the correct 
set of phases for small molecules. 

Phases are currently obtained mostly through methods 
of type (1), e.g. isomorphous replacement. Methods of 
type (2) using general constraints, are currently being 
applied to improve an existing phase set (e.g. density 
modification, for review see Podjarny, Bhat & Zwick, 
1987). 

Several attempts are currently being made to develop 
methods of type (2) applicable to solve the phase prob- 
lem ab initio for macromolecular crystals. One type 
of method is based on statistical approaches, which 
transform the known density constraint (e.g. atomic- 
ity, positivity, connectivity, fiat solvent envelope, etc.) 
into a relationship between structure factors, without 
generating explicitly all possible densities which fit the 
constraints. An example is maximum-entropy methods 
(Bricogne, 1984, 1993; Navaza, 1985). These methods 
can also generate a very large quantity of individual 
solutions, and try to identify the correct one using both 
the information on diffraction amplitudes and on electron 
density. This can be carried out as an extension of 
standard direct methods, e.g. by generating randomly a 
large number of starting phase sets and applying direct 
methods to them (Yao Jia-Xing, 1981; Hauptman, 1994). 

Another type of method, not based on statistical as- 
sumptions, is being developed in the very low resolution 
range (for review see Podjarny & Urzhumtsev, 1995), 
where the number of unknown phases is much smaller 
than at higher resolution ranges. One possibility is to 
search for a single solution, for example through the 
condensation of a large number of spheres (Subbiah, 
1991), to generate a model which fits the observed ampli- 
tudes. A major problem jn this approach is how to assure 
that the phase space is explored exhaustively, so the 
correct solution is not missed. This can be solved with a 
quasi-exhaustive investigation of all the possible density 
distributions, even in the absence of any model. Such an 
investigation has been carried out (Lunin, Urzhumtsev 
& Skovoroda, 1990) using the phases as variables and 
the histogram of the resulting density as the constraint. 
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It showed the feasibility of a Monte Carlo approach 
to find the correct solution by sampling the space of 
possible solutions, where every point represents a full set 
of structure factors. However, several problems arose. 

(1) The generated phase sets agreeing with the given 
criteria include both correct and incorrect solutions. 

(2) The number of amplitudes that can be phased 
is very small, limiting strongly the resolution of the 
resulting image. 

(3) Since the histograms are calculated in real space, 
the reflections in the inner core are necessary. 

To address (1), a procedure was developed to identify 
possible solutions (Lunin et al., 1990). This procedure 
works in a multidimensional space where every phase 
set is a point. Its application showed that the phase sets 
that agree with the given criteria are 'clustered' around 
a few separate points. This property is possibly linked 
to the fact that the low-resolution envelope depends 
mostly on a few phase invariants linked to reflections 
with strong amplitudes, and therefore the number of 
significant degrees of freedom is less than the total 
number of phases. However, since in this method the 
variables are the single phases, problem (2) remains 
unsolved. 

2. The FAM method 

To address the problems outlined above, a description 
of the electron density in terms of a few atoms model 
(FAM) was developed. In this approach, the variables 
are the positions of a very small number (<10) of 
large Gaussian scatterers or 'pseudo-atoms', and the 
fitness criterion is the agreement between structure- 
factor amplitudes calculated from these scatterers and the 
observed ones. Compared to the histogram method, the 
number of variables is significantly reduced. Moreover, 
as the fitness criterion is applied in reciprocal space, 
it is less sensitive to missing reflections. The a priori 
knowledge of the exact histogram is replaced by the 
determination of only two parameters, the number and 
size of the spheres. 

3. Approximation of density with a few atoms model 

The quality of the approximation of the very low res- 
olution structure factors with those calculated from a 
FAM was initially checked using data sets from the 
AspRS-tRNA A~p complex (in what follows this is called 
the AspRS complex; Moras et al., 1983; Urzhumtsev, 
Podjarny & Navaza, 1994), RNAse Sa (Sevcik, Dodson 
& Dodson, 1991) and ribosomal factor G (Chirgadze et 
al., 1991). One of these checks, using the cubic form 
of the AspRS complex, is described in detail below. 
The structure has been solved by molecular replacement 
(Urzhumtsev et al., 1994) with the package AMoRe  
(Navaza, 1994), using X-ray data to 8/~ resolution and a 

model from another crystal form (P2122) solved at 2.9 A~ 
resolution (Ruff et al., 1991). The cubic crystal form is 
particularly well suited for low-resolution work, due to 
the large unit cell (space group 1432, a = 354 ]k), the 
large solvent content (78%), and the compact shape of 
the complex. Three different H20/D20 contrast neutron 
data sets (d> 16A) were collected (Moras et al., 1983), 
corresponding to the full complex, the synthetase moiety 
and the tRNA moiety. The neutron diffraction data sets 
can be fitted correctly with the molecular-replacement 
model [Cor r (Fmod ;Fobs )  > 92% at 20 ~]. 

A 5 0 ~  resolution map calculated with 31 observed 
amplitudes and model phases shows a clear ovoidal 
peak corresponding to the position of the synthetase 
dimer. Symmetry-related peaks are joined by 'arms' 
corresponding to the tRNA's. To test the validity of 
the few atoms approximation, a four-spheres model 
was built by putting two atoms in the position of 
the synthetase and two atoms near the tRNA 'arms'. 
This model could be refined to an R factor of 16% 
at 5 0 ~  resolution, corresponding density correlation 
Corr(Pmod;Ptrue)  = 71%. It should be noted that a three- 
spheres model has a higher R factor (24%) but the 
50/~ resolution map reproduces almost equally well 
the correct o n e ,  Corr(Pmo~;Ptrue)  = 69%, with the third 
atom corresponding to the 'arms' joining the synthetase 
positions. Therefore, the observed data at 50 ~ can be 
quite accurately reproduced by a three- or four-spheres 
model. Note that the positions of the pseudo-atoms do 
not necessarily agree with the centres of gravity of the 
individual molecules. 

4. Exhaustive searches with a multiple-spheres model 

4.1. One-sphere searches 

The few atoms modelization for the AspRS complex 
was first used in a molecular-replacement context by 
Podjarny, Rees et al. (1987) who performed a one- 
sphere search using the neutron diffraction data with an 
adaptation of the program TRAN (J. Nachman, personal 
communication). This single-sphere search depends on 
three parameters: data resolution, F/a(F) cut-off and 
sphere size. After a trial-and-error procedure, it was 
found that a resolution of 50&, a value of F/or(F) 
of 15 and a Gaussian sphere with or(r) = 20A~ were 
optimal. Varying these parameters caused a variation of 
noise peaks on special positions but the correct solution 
remained stable. 

These searches show a property of the chosen subset 
of phase space that appears consistently. The generated 
points can be classified in two types: the correct solution 
and several spurious ones. Both types agree with the 
search criterion (in this case, the amplitude correlation) 
and it is necessary to apply an independent check (in this 
case, the assumption that the correct solution is not on a 
special position) in order to identify the correct solution. 
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4.2. Two-spheres searches 
These results were extended recently to two-spheres 

searches, at 50/~ resolution, with F/cr(F) cut-off of 
10 and with a(r) = 20A,, using the diffraction from 
the full complex. Special programs were developed for 
this purpose. A clear signal appeared, corresponding to 
one sphere being in the centre of the molecule and 
the second in a packing interaction. The two-spheres 
exhaustive searches represent the computing limit of 
current algorithms working on laboratory workstations. 
To introduce more spheres it is necessary to sample 
the solution space differently, for example by random 
checking of points instead of a systematic search. 

5. Monte Carlo searches and cluster analysis 
The following technique is proposed. 

(1) Few atoms models (FAM's), consisting of a small 
number (two to ten) of equally large spheres, are gener- 
ated in large quantities by randomly choosing the centre 
of every sphere. The only parameters to be varied are 
the size of the spheres and their number. 

(2) Structure factors are calculated for every FAM. 
The resulting sets of amplitudes and phases represent 
a sampling of solution space. The quantity of FAM's 
should be large enough so that this sampling is repre- 
sentative. 

(3) The generated sets of structure factors are filtered 
according to the correlation of calculated and observed 
amplitudes. Those sets with amplitude correlation larger 
than a given threshold are kept for further analysis 
(without discrimination between them). It should be 
noted that at this moment every FAM is represented only 
by its set of structure factors, and not by the original 
coordinates. 

(4) The sets of structure factors selected in (3) are 
grouped using a clusterization technique (see the Ap- 
pendix). This technique identifies the regions inside the 
space of variables which are densely populated by kept 
solutions and produces their average inside each region. 

In general, it is necessary to have additional criteria 
(other than just the amplitude correlation) in order to 
choose the correct solution after step (4). 

While the exhaustive searches described above are a 
particular case of low-resolution molecular-replacement 
methods (Urzhumtsev & Podjarny, 1995, and references 
therein), the FAM method is of a more general character. 

(a) The internal geometry of the model is completely 
unrestrained, allowing for sphere overlap; the imposed 
model is not a series of separate spheres, but a compact 
molecular region surrounded by a fiat solvent region. 

(b) The output of FAM is not the position of the model 
(as in molecular replacement) but the phases associated 
with a group of them; FAM models which are very 
different in atomic positions but lead to similar phase 
sets are associated in a 'cluster', and the final result is a 
single averaged phase set for this 'cluster'. 

6. Applications of Monte Carlo searches to the case 
of the AspRS complex 

6.1. FAM model generation 
The algorithm described above was tested using the 

neutron diffraction data set from the AspRS complex. 
These tests were conducted at 50/~ (31 reflections), 
where the experimental data are practically complete. 
Different numbers of pseudo-atoms were tried, ranging 
from one to ten. To measure the effectiveness of the FAM 
technique in a test case where the answer is known, the 
correlation Cor(qo,79true) for the different phase sets was 
calculated after every step. A more detailed description 
of this calculation, including the effects of symmetry, is 
given in the Appendix. 

Fig. 1 (a) shows the histogram of phase correlation af- 
ter generation of one-, two- and ten-pseudo-atom models, 
compared with that of a random generation of inde- 
pendent phases with uniform probability. The random 
distribution is essentially a measure of the volume of 
phase space at a given distance in correlation with the 
correct solution. 

The FAM distributions follow the random one for 
values of Cor(qo,qOtrue) < 0.45, but for the one- and two- 
atom cases become significantly larger when Cor(q0,qOtrue) 
> 0.45. Note that this effect diminishes as the number 
of atoms increases; it is largest for one-atom FAM's, 
remains important for two-atoms FAM's, but almost 
disappears for ten-atoms FAM's, as in this latter case the 
number of variables (30 atomic coordinates) approaches 
the number of phases (31 phases). This is an example of 
the fact that the filtering power of this first stage of FAM, 
as compared with just random phase sets, depends on its 
ability to generate good phase sets with fewer degrees 
of freedom. 

An interesting characteristic of the distribution of 
points after FAM generation is its bimodality, clearly 
seen for the one-atom FAM generation (Fig. la). This 
bimodality corresponds to phase sets where the pseudo- 
atom is either in the molecular region, with a positive 
correlation, or in the solvent region, with a negative 
density correlation. However, since the FAM method 
does not generate models which reproduce closely the 
large and convoluted solvent region, there are no peaks 
for Cor(qo,qOtrue) values close to -1. A possible way of 
eliminating this bimodality (when the correct solution is 
known) is to maximize the correlation in each point with 
respect to the transformation p = -p  as shown in Fig. 
l(b). The resulting curve has only positive correlations, 
and its highest end remains the same as before. 

6.2. Model selection by amplitude correlation 
The filtering of the phase sets from the FAM mod- 

elization is further enhanced by choosing the solutions 
with a large correlation in F. This is shown in Fig. 
l(c) for the two-atoms FAM selection, with cut-offs 
at 0.74 (corresponding to l a  deviation from the mean 
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amplitude correlation) and 0.81 (corresponding to 20-). 
This last curve, corresponding to 1179 possible points 
out of 500 000 generated, shows peaks for high values 
of Cor(~,ggtrue) indicating the creation of a densely 
populated zone of phase sets near the correct one. 

6.3. C l u s t e r i z a t i o n  

In the general case when the correct solution is 
not known, the identification of the dense zones after 
filtering is carried out by the clusterization procedure 
described in the A p p e n d i x ,  which leads to a 'cluster tree'. 
Fig. 2 shows several representations of the results of the 
application of this procedure to the data described in 
§6.2. 

. . . . . . . .  

random 1 atom 2 atoms 10 atoms 

81~ /1 

= I 

o .... ~ .................... ."~.-,~'~. • 0 . , ,  . . . . .  , . , , 0 0 0 • • . . 0 , , • • , . , 0 , 0 , , , . , , • 
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(a) 

The untreated 'cluster tree' is shown in Fig. 2(a), and 
its labeled interpretation in Fig. 2(b). There are three 
main clusters, indicated as C11, C12 and C13 (Fig. 2b). 
Investigation of these points allows the clear choice of 
one of them (C 12), based on the criterion that the core of 
the density should not be on symmetry elements (here, 
on the dyad axis x = y, z = 0). C12 is the largest cluster, 
and it can be further divided into two points, C21 and 
C22; again, one point is clearly better than the other by 
the same criterion. In this way, the correct pathway could 
be followed without any comparison with the correct 
density. When the process was finished, the syntheses 
corresponding to the 'cluster' phase sets were compared 
with the correct one at 50 A resolution. By going down 
two levels of the cluster tree, the correlation with the 
correct synthesis increases from 77 to 93%; however, 
going one level further does not increase this value 
anymore. 

As shown in Fig. 2(c), these clusters were already 
seen before the clusterization procedure in the histogram 
of Cor(~,~gtrue) after selection in amplitude correlation, 
where they appeared as separate peaks at different dis- 
tances from the correct solution. The figure shows the 
decomposition of this histogram (without normaliza- 
tion) into separate ones, corresponding to the different 
clusters. A clear correlation between the three main 
peaks and the three main clusters C11, C12 and C13 
is seen. Furthermore, the cluster C 12 shows a finer peak 
structure, corresponding to its partition into smaller ones; 
the correct cluster C22 is also indicated. 

For this favourable case, the compact portion of the 
clusters explains most of the models, and at a given 
distance from the correct solution one of them dominates 
the histogram. Note, however, the overlap of the peaks 
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Fig. 1. Histograms of  the number of  points with a given value of  the correlation Cor(~,~true) for different conditions of  FAM generation. The 
correlations obtained with random phases is also shown in (a) and (c). In all cases, the histograms are normalized to the same area. (a) FAM's  
with different number of  atoms: one, two and ten; (b) one-atom FAM's  with and without the transformation p----*-p; (c) two-atom FAM's  
with different cut-offs in amplitude correlation: none, l~r and 2¢r. 
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with correlation of 0.15, between the cluster C11 and 
the tail of cluster C12. This situation is schematized in 
Fig. 2(d). 

The process of clusterization has, therefore, been 
successful in recognising the correct solution. It is in- 
teresting to see how the merging and weighting of phase 
sets improves their quality. This is accomplished by two 
mechanisms: weighting down of structure factors whose 
phases are not collinear between different models, and 
cancellation of errors (the error of the average of several 
measurements is less than the average of the absolute 
value of the errors of each measurement). This "is most 
evident for cluster COO. The phase correlation of the 
cluster is 77%, while the average phase correlation of all 
models is only 26%. Likewise, the phase correlation of 

cluster C22 is 93%, while the average phase correlation 
for the intervening models is 77%. 

As noted above, this averaging inside the cluster dif- 
ferentiates the FAM method from molecular replacement 
because the goal is not to identify the correct solution 
as a single point, but to generate a manifold of points 
near the correct solution. Due to the approximations in 
the model, none of these points corresponds exactly to 
the correct solution, but the average approaches it very 
closely. 

Fig. 3 shows the 50/~ resolution map calculated with 
the phases and figures of merit from the correct cluster 
superposed with the correct model. This figure shows 
that the predicted envelope follows closely the borders of 
the model, and has therefore useful phasing information. 
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Fig. 2. Different representations of the clusters: (a) the untreated cluster tree, generated as described in the Appendix; (b) a labelled scheme of the 

cluster tree, indicating the main nodes and the corresponding Cor(~,~true) values; (c) analysis of curve (2o0 of Fig. l(c); for this analysis, the 
Cor(:p,~true) histograms were generated independently for each one of the main clusters; the peaks of these partial histograms correspond to 
the peaks of the main histogram, showing that the clusters appear in the main histogram independently of the clusterization procedure; note the 
overlap in Cor(~,~true) values of the smaller parts of C12 with the main pans of C11; (d) a schematic two-dimensional view of the shape of the 
clusters; each one of'the first level clusters (C11, C12 and C13) is represented by a series of circles, corresponding to the major peaks of the 
corresponding curve in Fig. 2(c); note that the central circle, corresponding to C22, is empty at the centre, indicating that no single FAM model 
reproduces the exact solution; the phases obtained by averaging this circular crown will be close to the centre, Cor(~a,~true) = 93%. 
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7. Application to a ribosome model crystal 

A case where finding an envelope is of great practical 
importance is that of the ribosome particle. To check the 
possibility of its application, the FAM method was tested 
with simulated ribosome data based on a 28 ~ elec- 
tron microscopy image of the 50S particle from Bacil- 
lus stearothermophilus (Berkovitch-Yellin, Wittmann & 
Yonath, 1990). For the purpose of the current tests, the 
corresponding envelope was packed simulating proper 
crystal contacts in the tetragonal crystal lattice of the 
50S particle from Thermus thermophilus (space group 
P41212, a = b = 495, c = 196 A.; Volkmann etal., 1990). 

The FAM technique was applied to structure factors 
calculated from this simulated crystal in the resolution 
range from 60 to 500 ~. Fig. 4(a) shows the cluster tree 
for the case of five atoms, 1 000 000 generations, with 
90 solutions having Cor(F)> 0.85. Fig. 4(b) shows the 
exact map at the resolution of 60/~, Fig. 4(c) shows 
the maps (also at 60/~ resolution) corresponding to the 
largest clusters and Table 1 gives their evaluation. The 
tree is dominated by a single large cluster, of radius close 
to 1.0 (corresponding to 60 ° phase error). Therefore, 
for these calculated data, the amplitude cut-off alone 
is enough to produce a first image. Note that, due to 
the merging of structure factors inside a cluster, higher 
resolution structure factors tend to be weighted down. 
This leads to an 'effective' resolution derf = 110 ~ of 
the map for the largest cluster (deft is a conditional 
limit defined as follows: for d < deft mean value of the 
figure of merit is less than 0.5). Dividing this cluster 
into smaller ones leads to an improvement of the image, 
leading in two levels to a map with d~ff = 60A, and 

Table i. Evaluation of" the different syntheses for the 
model ribosome crystal shown in Fig. 4 

Cluster C(q), ~0tr~e) (%) l)¢n. (,~) No. o f  points Notes Level 
o 
1 

COO 73 I I0 89 
CI 1 57 70 48 
C 12 80 65 41 Best 
C21 60 60 26 
C22 46 6O 22 
C23 68 60 24 
C24 86 N) 17 Best 
C31 75 60 5 
C32 87 60 2 Best 

Cor(qo,qDtrue) = 0.86, and going one level further does 
not substantially improve the image. As in the case of 
the AspRS complex, the correct solution can be easily 
identified by imposing a minimum of density on particle 
contacts. 

Similar maps, with Cor(~p,99true) values ranging from 
0.84 to 0.88, can be obtained by varying the number of 
trial models from 500 000 to 21300 000, the number of 
atoms from five to nine and the amplitude correlation 

(a) 

(b) 

C l l  ~ - -  

C2I ~ ~ -- ~ C22. C23 ~ C24 

(c) 
Fig. 4. Cluster tree for the model of  the ribosome crystal and correspond- 

ing maps. The 106 FAM's  were obtained with five atoms. After an 
amplitude cut-off of  0.85, 90 points were left. (a) Cluster tree obtained 
as described in the Appendix. Note that one point is clearly outside 
of  the main cluster COO. (b) Exact synthesis at 60/~, resolution. (c) 

Fig. 3. Overlap of  the 50 A resolution synthesis calculated with FAM Maps corresponding to the nodes of  the first four levels (0 to 4) of  the 
phases with the atomic model of  the AspRS complex in the cubic cell. cluster tree. The correct path is marked by thick lines, and the best 
The shape of  the density follows the model closely. The additional synthesis at each level is framed by a double line. The evaluation of  
densities correspond to symmetry-related molecules (not shown), these synthesis is shown in Table 1. 
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threshold from 0.85 to 0.83. The topology of the cluster 
tree tends to be independent of the number of accepted 
solutions. 

8. The retrieval of 'inner core' amplitudes 

This method depends on the availability of the 'inner 
core' of reflections, which are generally very difficult 
to measure. Previous experience in density-modification 
techniques (Rayment, 1983; Urzhumtsev, 1991) has 
shown that if an approximate envelope can be obtained, 
the inner core of reflections can be retrieved from this 
envelope. Extension of this idea to the FAM method 
suggests that if the proper cluster could be identified 
from data without the 'inner core' reflections, the FAM 
models inside the clusters could provide information 
about them. 

This possibility was tested using the ribosome model 
data. In this test, all reflections were calculated from 
FAM models, but the criteria of checking by amplitude 
correlation with observed data and the clusterization 
procedure were applied using only the reflections in the 
60-150 A, resolution range. For this calculated case with 
exact amplitude values, these reflections were enough 
to make FAM converge to the correct solution, and 
the generated FAM models were able to retrieve the 
phases in the 150-500 A, resolution range. The possibil- 
ity of generalizing this result to experimental data with 
amplitude errors is being analysed. 

9. Concluding remarks 

The results shown above prove that using only the am- 
plitudes the FAM method can produce a small number of 
images, from which the correct one can be picked unam- 
biguously using simple additional criteria (e.g. packing). 
Therefore, it provides an ab initio method for solving 
the phase problem at very low resolution, from which 
a detailed envelope is obtained. It is important to note 
that the phase prediction carried out by averaging all 
solutions inside the correct cluster is significantly better 
than the one obtained by a single FAM model. 

This method works optimally with the correct choice 
of number and size of spheres, complexity of image 
and resolution. Once a solution is found for the 'inner 
core' of reflections, it is necessary to extend it to 
higher resolution. Several alternatives are being tested 
for this extension, for example to limit the number 
of models to be searched by simple criteria in real 
space (e.g. generation inside one prescribed region), 
as well as to use a limited part of phase space (e.g. 
inside one cluster). Furthermore, this methodology is not 
restricted to spheres, but can be extended to different 
modelizations. 
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APPENDIX 

The process of clusterization is carried out as a function 
of a parameter b measuring the distance between points 
in the space of phase sets. Initially, 6 = 0 and each point 
is an individual cluster; 6 is then continuously increased, 
and cluster pairs are iteratively merged as the distance 
between them becomes less than 6 (Lunin et al., 1990). 
This distance, e.g. between points j and k, is determined 
in terms of the correlation of the corresponding densities 
as,  

Djk = ~* { f Ipj(r)-  pk(r)]2d3r} ~/2 = ( 2 -  2Cjk) I/2, (A 1) 

where the density correlation is, 

Cik = { f[pj(r)pk(r)]d3r}/( {f[pj(r)]ed3r} 

× {f[pk(r)]2d3r})l/2, (Z2) 

(Lunin et al., 1990) and can be directly calculated 
in terms of structure factors (Read, 1986; Lunin & 
Woolfson, 1993). This distance is 0 when the points 
are the same (Cjk = 1), 2 when the points are exactly 
opposite (Cjk = -1) and 21/2 when they are not related 
(Cjk = 0). A Djk value of 1.0 corresponds to a density 
correlation of 0.5 (weighted phase error of 60°). It is 
important to note that this correlation Cjk depends on the 
choice of the origin (and enantiomorph, if this operation 
is admissible in the particular space group). Therefore, 
for every point all corresponding correlations should be 
checked and the maximum kept as a true one. When 
the two clusters consist of more than one point, the 
distance between clusters is defined as the minimum 
of all pairwise distances between points in different 
clusters. 

At the very low resolution range, the model can 
correspond to the protein or to the solvent, and therefore 
the distance Djk can also be optimized with respect to 
the transformation p = -p. In this case, one model is 
kept as a reference and all maps are explored both for 
maxima and minima. This option has been implemented 
in the last versions of FAM and has been applied for the 
calculation described in Fig. l(b). 



V. YU. LUNIN et al. 903 

The scheme of the clusterization is shown in Fig. 5(a). 
Let us consider four points in solution space, A, B, C 
and D, and vary the parameter b from 0 to 2 during 
the clusterization process. When 6=~51, the distance 
between A and B, these points are merged into a new 
cluster, K. When b = ~52, the distance between C and D, 
these points are merged into a new cluster, N. When 

= b3, the distance between K and N, these points are 
merged into a new cluster, M. Fig. 5(b) shows how this 
process can be graphically represented in a 'tree', in 
which the X axis shows the solution number, ordered by 
proximity to avoid crossing of lines, and the Y axis shows 
the distance b. A new point, for example K, will have 
as Y coordinate the distance 61, and an X coordinate 
between A and B. To illustrate the merging, lines are 
drawn from the original points to the new one. The 
process of clusterization continues in this way until all 
solutions have merged into a single point. 

Once full clusterization is achieved, the tree can be 
analysed to obtain representative phase sets by averaging 
all phase sets in each cluster. The zero level corresponds 
to the overall average (point M). The first level corre- 
sponds to the splitting of this point into its components 
(points N and K). The next levels can be calculated 

A• A+B=K O~ i 

0 
c D C 52 D C+O=N 

(a) 

A B C D A B C D A B C D A B C D 

(b) 
Fig. 5. Scheme of clusterization procedure. 

similarly. For each level, the phase ~(h,k,l) and its figure 
of merit w(h,k,l) can be obtained by averaging all the 
original phases ~j(h,k,l), where the index j goes over all 
the points in the cluster, as follows, 

w(h,k,l) exp[i~(h,k,l)] = ~ exp[i,~j(h,k,l)]. (A3) 
J 
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